A 2D Coupled Atmosphere–Ocean Model Study of Air–Sea Interactions during a Cold Air Outbreak over the Gulf Stream
نویسندگان
چکیده
The two-dimensional, Advanced Regional Prediction System (ARPS) has been coupled with the Princeton Ocean Model to study air–sea interaction processes during an extreme cold air outbreak over the Gulf Stream off the southeastern United States. Emphases have been placed on the development of the mesoscale front and local winds in the lower atmosphere due to differential fluxes over the land, the cold shelf water, and the warm Gulf Stream, and on how the mesoscale front and the local winds feed back to the ocean and modify the upperocean temperature and current fields. Model results show that a shallow mesoscale atmospheric front is generated over the Gulf Stream and progresses eastward with the prevailing airflow. Behind the front, the wind intensifies by as much as 75% and a northerly low-level wind maximum with speeds near 5 m s 1 appears. The low-level northerly winds remain relatively strong even after the front has progressed past the Gulf Stream. The total surface heat flux in the coupled experiment is about 10% less than the total surface heat flux in the experiment with fixed SST, suggesting that the oceanic feedback to the atmosphere might not be of leading importance. On the other hand, the response of the upper-ocean velocity field to the local winds is on the order of 20 cm s 1, dominating over the response to the synoptic winds. This suggests the modification in the atmosphere by air– sea fluxes, which induces the locally enhanced winds, has considerable impact on the ocean. That is, there is significant atmospheric feedback to the ocean through the heat-flux-enhanced surface winds.
منابع مشابه
Air-sea interactions during the passage of a winter storm over the Gulf Stream: A three-dimensional coupled atmosphere-ocean model study
[1] A three-dimensional, regional coupled atmosphere-ocean model with full physics is developed to study air-sea interactions during winter storms off the U. S. east coast. Because of the scarcity of open ocean observations, models such as this offer valuable opportunities to investigate how oceanic forcing drives atmospheric circulation and vice versa. The study presented here considers condit...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملCapabilities of data assimilation in correcting sea surface temperature in the Persian Gulf
Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...
متن کاملYoshida and Nobumasa Komori Graphic Representation of the Gulf Stream Surface Current Speeds in Blue-white (white Is the Fast- Est) and Upward Wind Velocities in Yellow-red (red for Stronger Winds), along with Land-surface
Ocean surface temperatures and wind speeds tend to vary together across ocean basins away from tropical regions. Typically, stronger surface winds are seen over cooler and weaker winds over warmer water, because strong winds cool the ocean surface by evaporation and by stirring up cold subsurface water. But is this always the case? Aside from warm tropical oceans, where moist air ascends high i...
متن کاملA Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model
An atmosphere-ocean coupled mesoscale modeling system is developed and used to investigate the interactions between a squall line and the upper ocean observed over the western Pacific warm pool during the Tropical Ocean/Global Atmosphere Coupled Ocean and Atmosphere Response Experiment (TOGA-COARE). The modeling system is developed by coupling the Advanced Regional Prediction System (ARPS) to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004